is everywhere zero on this chain; further, suppose that each of F, dF/dp, ... , dF/dx + pdF/dz is developable about each element of this chain T, and that T is _not_ a characteristic chain. Then consider the aggregate of the characteristic chains issuing from all the elements of T. The [oo]² elements, consisting of the aggregate of these characteristic chains, satisfy F = 0, provided the chain connectivity T consists of elements satisfying F = 0; for each characteristic chain satisfies dF = 0. It can be shown that these chains are connected; in other words, that if x, y, z, p, q, be any element of one of these characteristic chains, not only is Entry: U0
If the pressure falls off uniformly, so that the pressure-curve is a straight line PDF sloping downwards and cutting AM in F, then the energy-curve will be a parabola curving downwards, and the velocity-curve can be represented by an ellipse, or circle with centre F and radius FA; while the time-curve will be a sinusoid. Entry: 3