Quotes4study

Your thought sees power in armies, cannons, battleships, submarines, aeroplanes, and poison gas. But mine asserts that power lies in reason, resolution, and truth. No matter how long the tyrant endures, he will be the loser at the end. Your thought differentiates between pragmatist and idealist, between the part and the whole, between the mystic and materialist. Mine realizes that life is one and its weights, measures and tables do not coincide with your weights, measures and tables. He whom you suppose an idealist may be a practical man.

Khalil Gibran

For thirty-six hours now the Bolsheviki had been cut off from provincial Russia and the outside world. The railway men and telegraphers refused to transmit their despatches, the postmen would not handle their mail. Only the Government wireless at Tsarskoye Selo launched half-hourly bulletins and manifestoes to the four corners of heaven; the Commissars of Smolny raced the Commissars of the City Duma on speeding trains half across the earth; and two aeroplanes, laden with propaganda, fled high up toward the Front....

John Reed     Ten Days That Shook the World

Largely with the view of studying the problem of maintaining equilibrium, several experimenters, including Otto Lilienthal, Percy Pilcher and Octave Chanute, cultivated gliding flight by means of aeroplanes capable of sustaining a man. They depended mainly on the utilization of natural air currents, trusting for stability and balance to movements in their own bodies, or in portions of their machines which they could control. They threw themselves from natural or artificial elevations, or, facing the wind, they ran or were dragged forwards against it until they got under way and the wind caught hold of their aeroplanes. To Lilienthal in Germany belongs the double credit of demonstrating the superiority of arched over flat surfaces, and of reducing gliding flight to regular practice. He made over 2000 glides safely, using gravity as his motive power, with concave, batlike wings, in some cases with superposed surfaces (fig. 49). It was with a machine of the latter type that he was upset by a sudden gust of wind and killed in 1896. Pilcher in England improved somewhat on Lilienthal's apparatus, but used the same general method of restoring the balance, when endangered, by shifting the weight of the operator's body. He too made several hundred glides in safety, but finally was thrown over by a gust of wind and killed in 1899. Chanute in America confined his endeavours to the production of automatic stability, and made the surfaces movable instead of the man. He used several different forms of apparatus, including one with five superposed pairs of wings and a tail (fig. 50) and another with two continuous aeroplanes, one above the other (fig. 51). He made over 1000 glides without accident. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Sir Hiram S. Maxim, like Langley, employed a staff of highly skilled workmen. His machine (fig. 48) consisted of a platform, on which stood a large water-tube boiler, a number of concavo-convex aeroplanes arranged in tiers like shelves, each making a slight upward angle with the horizon, two very large vertical screws placed aft and propelled by steam engines, tanks for the storage of water, naphtha, &c. The boiler was especially noteworthy. The water was contained in about 2000 bent copper tubes, only 3/8 in. in external diameter, heated by over 7000 gas jets arranged in rows. The fuel was naphtha or gasoline. Steam could be got up in the short space of half a minute. The steam-generating appliances, which weighed only 1000 lb. in all, were placed in the front of the machine. The motive power was provided by a pair of two-cylinder, compound engines, poised about 8 ft. from the ground, and about 6 ft. apart. Each of them was independently governed, and furnished together 363 horse-power in actual effect, an amount which, considering that their total weight was only 600 lb., gave the extraordinary efficiency of over 1 horse-power for every 2 lb. weight. The high and the low pressure cylinders were 5 and 8 in. in diameter respectively, and the stroke was 12 in. When going at full speed these engines conferred 425 revolutions per minute on the two gigantic propellers that drove the machine along. These were in appearance like two-bladed marine propellers except that they were square instead of rounded at the ends, and were broad and thin. They were built from overlapping strips of American pine, planed smooth and covered with glued canvas. They weighed 135 lb. each, the length of each blade being close upon 9 ft. and the width at the ends 5½ ft. The pitch was 16 ft. They were carefully stayed by steel wires to their shafts, or the first revolution would have snapped them off short. The material of which the framework was built was thin steel tubing, exceedingly light. All the wires and ties were of the best steel, capable of standing a strain of 100 tons to the square inch. The body of the machine was oblong in shape, with the fore-part cut away like a water-chute boat, and a long counter at the stern over which the propellers revolved. It had canvas stretched all over it. High overhead, like a gigantic awning, was the slightly concavo-convex main aeroplane, tilted towards the front at an imperceptible angle, and stretched taut. Its area was 1400 sq. ft., increased by side wings to 2700 sq. ft. There were also side aeroplanes arranged in tiers, and large aeroplanes in front, which were pivoted and served for vertical steering. The machine was strengthened in every direction by vertical and other supports and securely wired together at all points. It was furnished with four strong flanged wheels and ran along a light broad-gauge (9 ft.) railway track, 1800 ft. long, in the hope that when the speed reached a certain point it would leave the rails, but it was prevented from rising more than an inch or so by four arms, or outriggers, furnished with wheels, which projected from its sides and ran under an inverted wooden upper or safety track outside the railway track proper. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Similar experiments were meanwhile conducted by Wilbur and Orville Wright of Dayton, Ohio, in whose hands the glider developed into a successful flying machine. These investigators began their work in 1900, and at an early stage introduced two characteristic features--a horizontal rudder in front for steering in the vertical plane, and the flexing or bending of the ends of the main supporting aeroplanes as a means of maintaining the structure in proper balance. Their machines to begin with were merely gliders, the operator lying upon them in a horizontal, position, but in 1903 a petrol motor was added, and a flight lasting 59 seconds was performed. In 1905 they made forty-five flights, in the longest of which they remained in the air for half an hour and covered a distance of 24½ m. The utmost secrecy, however, was maintained concerning their experiments, and in consequence their achievements were regarded at the time with doubt and suspicion, and it was hardly realized that their success would reach the point later achieved. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Langley's machine shown in fig. 46 was a working model, not intended to carry passengers. In configuration the body-portion closely resembled a mackerel. The backbone was a light but very rigid tube of aluminium steel, 15 ft. in length, and a little more than 2 in. in diameter. The engines were located in the portion of the framework corresponding to the head of the fish; they weighed 60 oz. and developed one horse-power. There were four boilers made of thin hammered copper and weighing a little more than 7 lb. each; these occupied the middle portion of the fish. The fuel used was refined gasoline, and the extreme end of the tail of the fish was utilized for a storage tank with a capacity of one quart. There were twin screw propellers, which could be adjusted to different angles in practice, to provide for steering, and made 1700 revolutions a minute. The wings, or aeroplanes, four in number, consisted of light frames of tubular aluminium steel covered with china silk. The pair in front were 42 in. wide and 40 ft. from tip to tip. They could be adjusted at different angles. The machine required to be dropped from a height, or a preliminary forward impetus had to be given to it, before it could be started. Fixity of all the parts was secured by a tubular mast extending upwards and downwards through about the middle of the craft, and from its extremities ran stays of aluminium wire to the tips of the aeroplanes and the end of the tubular backbone. By this trussing arrangement the whole structure was rendered exceedingly stiff. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

After Pettigrew enunciated his views (1867) as to the screw configuration and elastic properties of natural wings, and more especially after his introduction of spiral, elastic artificial wings, and elastic screws, a great revolution took place in the construction of flying models. Elastic aeroplanes were advocated by D.S. Brown,[14] elastic aerial screws by J. Armour,[15] and elastic aeroplanes, wings and screws by Alphonse Pénaud.[16] Entry: INSECTS

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

This fact is important as bearing on the construction of flying machines. It shows that a flying machine need not necessarily be a light, airy structure exposing an immoderate amount of surface. On the contrary, it favours the belief that it should be a compact and moderately heavy and powerful structure, which trusts for elevation and propulsion entirely to its flying appliances--whether actively moving wings, or screws, or aeroplanes wedged forward by screws. It should attack and subdue the air, and never give the air an opportunity of attacking or subduing it. It should smite the air intelligently and as a master, and its vigorous well-directed thrusts should in every instance elicit an upward and forward recoil. The flying machine must be _multum in parvo_. It must launch itself in the ocean of air, and must extract from that air, by means of its travelling surfaces--however fashioned and however applied--the recoil or resistance necessary to elevate and carry it forward. Extensive inert surfaces indeed are contra-indicated in a flying machine, as they approximate it to the balloon, which, as has been shown, cannot maintain its position in the air if there are air currents. A flying machine which could not face air currents would necessarily be a failure. To obviate this difficulty we are forced to fall back upon _weight_, or rather the structures and appliances which weight represents. These appliances as indicated should not be unnecessarily expanded, but when expanded they should, wherever practicable, be converted into actively moving flying surfaces, in preference to fixed or inert dead surfaces. Entry: FLIGHT

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

The reader has only to imagine figs. 8 and 9 cut out in paper to realize that extensive, inert, horizontal aeroplanes[2] in a flying machine would be a mistake. It is found to be so practically, as will be shown by and by. Fig. 9 so cut out would be heavier than fig. 8, and if both were exposed to a current of air, fig. 9 would be more blown about than fig. 8. Entry: FLIGHT

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Stringfellow, who was originally associated with Henson, and built a successful flying model in 1847, made a second model in 1868, in which Wenham's aeroplanes were combined with aerial screws. This model was on view at the exhibition of the Aeronautical Society of Great Britain, held at the Crystal Palace, London, in 1868. It was remarkably compact, elegant and light, and obtained the £100 prize of the exhibition for its engine, which was the lightest and most powerful so far constructed. The illustration below (fig. 44), drawn from a photograph, gives a very good idea of the arrangement--a, b, c representing the superimposed aeroplanes, d the tail, e, f the screw propellers. The superimposed aeroplanes (a, b, c) in this machine contained a sustaining area of 28 sq. ft., in addition to the tail (d). Its engine represented a third of a horse power, and the weight of the whole (engine, boiler, water, fuel, superimposed aeroplanes and propellers) was under 12 lb. Its sustaining area, if that of the tail (d) be included, was something like 36 sq. ft., i.e. 3 sq. ft. for every pound. The model was forced by its propellers along a wire at a great speed, but so far as an observer could determine, failed to lift itself, notwithstanding its extreme lightness and the comparatively very great power employed. Stringfellow, however, stated that it occasionally left the wire and was sustained by its aeroplanes alone. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

F.H. Wenham, thinking to improve upon Henson, invented in 1866 what he designated his aeroplanes.[19] These were thin, light, long, narrow structures, arranged above each other in tiers like so many shelves. They were tied together at a slight upward angle, and combined strength and lightness. The idea was to obtain great sustaining area in comparatively small space with comparative ease of control. It was hoped that when the aeroplanes were wedged forward in the air by vertical screws, or by the body to be flown, each aeroplane would rest or float upon a stratum of undisturbed air, and that practically the aeroplanes would give the same support as if spread out horizontally. The accompanying figures illustrate Wenham's views (figs. 42 and 43). Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

The median fin, especially in its caudal section, is the main propelling organ: the paired fins in the majority of fishes serve for balancing. In the Dipneusti the paired fins are used for clambering about amidst vegetation, much in the same fashion as the limbs of Urodeles. In _Ceratodus_ they also function as paddles. In various Teleosts the pectoral fins have acquired secondarily a leg-like function, being used for creeping or skipping over the mud (_Periophthalmus_; cf. also Trigloids, Scorpaenids and Pediculati). In the "flying" fishes the pectoral fins are greatly enlarged and are used as aeroplanes, their quivering movements frequently giving a (probably erroneous) impression of voluntary flapping movements. In the gobies and lumpsuckers (_Cyclopteridae_) the pelvic fins are fused to form an adhesive sucker; in the _Gobiesocidae_ they take part in the formation of a somewhat similar sucker. Entry: A

Encyclopaedia Britannica, 11th Edition, Volume 14, Slice 3 "Ichthyology" to "Independence"     1910-1911

D.S. Brown also wrote (1874) in support of elastic aero-biplanes. His experiments proved that two elastic aeroplanes united by a central shaft or shafts, and separated by a wide interval, always produce increased stability. The production of flight by the vertical flapping of wings is in some respects the most difficult, but this also has been attempted and achieved. Pénaud and A.H. de Villeneuve each constructed winged models. Marey was not so fortunate. He endeavoured to construct an artificial insect on the plan advocated by Borelli, Strauss-Dürckheim and Chabrier, but signally failed, his insect never having been able to lift more than a third of its own weight. Entry: D

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

In the larger aerodrome (fig. 47) the aeroplanes were concavo-convex, narrow, greatly elongated and square at their free extremities, the two propellers, which were comparatively very large, being placed amidships, so to speak. At the first trial of this machine, on the 7th of October 1903, just as it left the launching track it was jerked violently down at the front (being caught, as subsequently appeared, by the falling ways), and under the full power of its engine was pulled into the water, carrying with it its engineer. When the aerodrome rose to the surface, it was found that while the front sustaining surfaces had been broken by their impact with the water, yet the rear ones were comparatively uninjured. At the second and last attempt, on the 8th of December 1903, another disaster, again due to the launching ways, occurred as the machine was leaving the track. This time the back part of the machine, in some way still unexplained, was caught by a portion of the launching car, which caused the rear sustaining surface to break, leaving the rear entirely without support and it came down almost vertically into the water. Darkness had come before the engineer, who had been in extreme danger, could aid in the recovery of the aerodrome. The boat and machine had drifted apart, and one of the tugs in its zeal to render assistance had fastened a rope to the frame of the machine in the reverse position from what it should have been attached, and had broken the frame entirely in two. Owing to lack of funds further trials were abandoned (see _Annual Report of the Smithsonian Institution_, 1904, p. 122). Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Pénaud's experiments are alike interesting and instructive. He constructed models to fly by three different methods:--(a) by means of screws acting vertically upwards; (b) by aeroplanes propelled horizontally by screws; and (c) by wings which flapped in an upward and downward direction. An account of his helicoptère or screw model appeared in the _Aeronaut_ for January 1872, but before giving a description of it, it may be well to state very briefly what is known regarding the history of the screw as applied to the air. Entry: INSECTS

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

The aerial steamer of Thomas Moy (fig. 45), designed in 1874, consisted of a light, powerful, skeleton frame resting on three wheels; a very effective light engine constructed on a new principle, which dispensed with the old-fashioned, cumbrous boiler; two long, narrow, horizontal aeroplanes; and two comparatively very large aerial screws. The idea was to get up the initial velocity by a preliminary run on the ground. This accomplished it was hoped that the weight of the machine would gradually be thrown upon the aeroplanes in the same way that the weight of certain birds--the eagle, e.g.--is thrown upon the wings after a few hops and leaps. Once in the air the aeroplanes, it was believed, would become effective in proportion to the speed attained. The machine, however, did not realize the high expectations formed of it, and like all its predecessors it was doomed to failure. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Wilbur Wright's machine (fig. 53), that used by his brother being essentially the same, consisted of two slightly arched supporting surfaces, each 12½ metres long, arranged parallel one above the other at a distance of 1-4/5 metres apart. As they were each about 2 metres wide their total area was about 50 sq. metres. About 3 metres in front of them was arranged a pair of smaller horizontal aeroplanes, shaped like a long narrow ellipse, which formed the rudder that effected changes of elevation, the driver being able by means of a lever to incline them up or down according as he desired to ascend or descend. The rudder for lateral steering was placed about 2½ metres behind the main surfaces and was formed of two vertical pivoted aeroplanes. The lever by which they were turned was connected with the device by which the ends of the main aeroplanes could be flexed simultaneously though in opposite directions; i.e. if the ends of the aeroplanes on one side were bent downwards, those on the other were bent upwards. By the aid of this arrangement the natural cant of the machine when making a turn could be checked, if it became excessive. The four-cylinder petrol engine was placed on the lower aeroplane a little to the right of the central line, being counterbalanced by the driver (and passenger if one was carried), who sat a little to the left of the same line. Making about 1200 revolutions a minute, it developed about 24 horse-power, and was connected by chain gearing to two wooden propellers, 2½ metres in diameter and 3½ metres apart, the speed of which was about 450 revolutions a minute. The whole machine, with aeronaut, weighed about 1100 lb., the weight of the motor being reputed to be 200 lb. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Pénaud next directed his attention to the construction of a model, to be propelled by a screw and sustained by an elastic aeroplane extending horizontally. Sir George Cayley proposed such a machine in 1810, and W.S. Henson constructed and patented a similar machine in 1842. Several inventors succeeded in making models fly by the aid of aeroplanes and screws, as, e.g. J. Stringfellow in 1847,[18] and F. du Temple in 1857. These models flew in a haphazard sort of a way, it being found exceedingly difficult to confer on them the necessary degree of stability fore and aft and laterally. Pénaud succeeded in overcoming the difficulty in question by the invention of what he designated an automatic rudder. This consisted of a small elastic aeroplane placed aft or behind the principal aeroplane which is also elastic. The two elastic aeroplanes extended horizontally and made a slight upward angle with the horizon, the angle made by the smaller aeroplane (the rudder) being slightly in excess of that made by the larger. The motive power was india-rubber in the condition of torsion; the propeller, a screw. The reader will understand the arrangement by a reference to the accompanying drawing (fig. 39). Entry: INSECTS

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

About a year later Henry Farman made several short flights on a machine of the biplane type, consisting of two main supporting surfaces one above the other, with a box-shaped vertical rudder behind and two small balancing aeroplanes in front. The engine was an eight-cylinder Antoinette petrol motor, developing 49 horse-power at 1100 revolutions a minute, and driving directly a single metal screw propeller. On the 27th of October 1906 he flew a distance of nearly half a mile at Issy-les-Molineaux, and on the 13th of January 1908 he made a circular flight of one kilometre, thereby winning the Deutsch-Archdeacon prize of £2000. In March he remained in the air for 3½ minutes, covering a distance of 1¼ m.; but in the following month a rival, Leon Delagrange, using a machine of the same type and constructed by the same makers, Messrs Voisin, surpassed this performance by flying nearly 2½ m. in 6½ minutes. In July Farman remained in the air for over 20 minutes; on the 6th of September Delagrange increased the time to nearly 30 minutes, and on the 29th of the same month Farman again came in front with a flight lasting 42 minutes and extending over nearly 24½ m. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Two of the most famous of the next attempts to solve the problem of artificial flight, by means of aeroplanes, were those of Prof. S.P. Langley and Sir Hiram S. Maxim, who began their aerial experiments about the same time (1889-1890). By 1893-1894 both had embodied their views in models and large flying machines. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Langley, who occupied the position of secretary to the Smithsonian Institution, Washington, U.S.A., made many small flying models and one large one. These he designated "aerodromes." They were all constructed on a common principle, and were provided with extensive flying surfaces in the shape of rigid aeroplanes inclined at an upward angle to the horizon, and more or less fixed on the plan advocated by Henson. The cardinal idea was to force the aeroplanes (slightly elevated at their anterior margins) forwards, kite-fashion, by means of powerful vertical screw propellers driven at high speed--the greater the horizontal speed provided by the propellers, the greater, by implication, the lifting capacity of the aerodrome. The bodies, frames and aeroplanes of the aerodromes were strengthened by vertical and other supports, to which were attached aluminium wires to ensure absolute rigidity so far as that was possible. Langley aimed at great lightness of construction, and in this he succeeded to a remarkable extent. His aeroplanes were variously shaped, and were, as a rule, concavo-convex, the convex surface being directed upwards. He employed a competent staff of highly trained mechanics at the Smithsonian Institution, and great secrecy was observed as to his operations. He flew his smallest models in the great lecture room of the National Museum, and his larger ones on the Potomac river about 40 m. below Washington. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Thanks, however, to the efforts of automobile engineers, great improvements were now being effected in the petrol engine, and, although the certainty and trustworthiness of its action still left something to be desired, it provided the designers of flying machines with what they had long been looking for--a motor very powerful in proportion to its weight. Largely in consequence of this progress, and partly no doubt owing to the stimulus given by the activity of builders of dirigible balloons, the construction of motor-driven aeroplanes began to attract a number of workers, especially in France. In 1906 A. Santos Dumont, after a number of successful experiments with dirigible cigar-shaped gas balloons, completed an aeroplane flying machine. It consisted of the following parts:--(a) A system of aeroplanes arranged like the capital letter T at a certain upward angle to the horizon and bearing a general resemblance to box kites; (b) a pair of very light propellers driven at a high speed; and (c) an exceedingly light and powerful petrol engine. The driver occupied a position in the centre of the arrangement, which is shown in fig. 52. The machine was furnished with two wheels and vertical supports which depended from the anterior parts of the aeroplanes and supported it when it touched the ground on either side. With this apparatus he traversed on the 12th of November 1906 a distance of 220 metres in 21 seconds. Entry: F

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 5 "Fleury, Claude" to "Foraker"     1910-1911

Index: